6,945,000 تومان قیمت اصلی: 6,945,000 تومان بود.1,389,000 تومانقیمت فعلی: 1,389,000 تومان.
ویژگی های دوره
علم داده با پایتون یا همان Data science در حال حاضر یکی از محبوب ترین و پرطرفدارترین گرایشهای هوش مصنوعی به حساب میآید. به طوری که در سراسر جهان (از جمله ایران)، این تخصص به شدت مورد توجه شرکتها قرار گرفته است. در آمریکا، میانگین حقوق پرداختی به یک متخصص علم داده (ِData scientist) و یادگیری ماشین (Machine learning) بیش از 120 هزار دلار در سال می باشد و این در حالی است که یک مهندس برق 100 هزار در سال میگیرد.
در ایران نیز شرکتهای بزرگ از جمله اسنپ، تپ سی، کافه بازار، علـی بـابـا، شرکتهای بانکی و بیمهای و …، همگی همواره فرصت شغلیهای متخصص علم داده را دارند. علت محبوبیت این تخصص، افزایش روزانه حجم تولید داده و داده محور شدن اکثر کسب و کارهای امروزی است. میتوان داده را مساوی طلا در نظر گرفت.
هر چقدر دادههای موجود در پایگاه داده شرکت افزایش پیدا کند، سرمایه شرکت بیشتر میشود. حال، برای تبدیل کردن این دادههای حجیم و تمیز نشده، نیاز است از این تخصص استفاده کرد تا با کشف الگوهای پنهان از پردازش میلیونها داده، نتایج شگف انگیزی را بدست آورد و تحلیل کرد.
یکی دیگر از محبوب شدن علم داده، کمک به کاهش هزینه، افزایش قابل توجه درآمد و افزایش قدرت رقابت در بازار است. شما به کمک data science، میتوانید هر نوع دادهای را تحلیل کنید (دادههای پایگاه داده و کسب و کار، متن گزارشات و اسناد، تصاویر، سخنرانیها و …)
در این دوره چه مباحثی آموزش داده شده است؟
پکیج علم داده (Data Science) با پایتون، مجموع چهار دوره مبانی و مفاهیم داده کاوی و یادگیری ماشین، داده کاوی و یادگیری ماشین با پایتون، متن کاوی و پردازش زبانهای طبیعی با پایتون و یادگیری عمیق با پایتون است.
توجه: پکیج در سه فصل قرار گرفته است و با هدف یادگیری کامل و تسلط به مباحث پکیج، نیاز است که فایلها به ترتیب فهرست مشاهده شوند:
1-1) مبانی و مفاهیم داده کاوی و یادگیری ماشین: به آموزش جامع مفاهیم داده کاوی پرداخته می شود و به طور کامل، مفاهیم مربوط با داده کاوی و یادگیری ماشینی را یاد خواهید گرفت.
1-2) داده کاوی و یادگیری ماشین با پایتون: به آموزش داده کاوی (data mining) و بکارگیری آن در کسب و کار و انجام پروژههای دانشگاهی پرداخته میشود.
2) متن کاوی و پردازش زبانهای طبیعی با پایتون: در فصل دوم؛ شما در تحلیل دادههای کیفی (فایلهای PDF، Word، .txt ، متن صفحات وب و دیتای متن در اکسل و (CSV به مهارت بسیار خوبی خواهید رسید و انواع متن را به کمک هوش مصنوعی تحلیل خواهید نمود.
3) یادگیری عمیق با پایتون: وژن نوینی از یادگیری ماشین که شما میتوانید مدلهای پیش بینی کننده (از جمله پروژههای طبقه بندی، تحلیل احساسات، طبقه بندی تصاویر، پیش بینی سریهای زمانی و …) را با آن انجام دهید.
سرفصل های دوره پکیج جامع علم داده با پایتون
فصل 1-1 مبانی داده کاوی و یادگیری ماشین
آشنایی با مفاهیم اولیه
- تعریف داده کاوی (data mining)
- اهمیت داده کاوی
- کاربرد داده کاوی در صنایع و کسب و کارهای مختلف
- تعریف فرآیند داده کاوی
- تعریف یادگیری ماشین (machine learning) و کاربرد آن در داده کاوی
- تفاوت میان داده کاوی و علم داده (data science)
- هدف دوره
مفهوم جبر خطی در داده کاوی و یادگیری ماشین
- تعریف جبر خطی
- اهمیت جبر خطی در داده کاوی
- بردارها و محاسبات برداری
- نرم برداری
- ماتریسها و محاسبات ماتریس
آشنایی با انواع دیتا
- دیتای ساختار یافته (Structured data)
- دیتای نیمه ساختار یافته (Semi-structured data)
- دیتای بدون ساختار (Unstructured data)
مفاهیم تحلیل آماری و رسم نمودار در داده کاوی و یادگیری ماشین
- آشنایی با انواع نمودار (پیاده سازی در پایتون)
- تعریف آمار و علم آمار
- ابزارهای مورد استفاده برای تهیه گزارش آماری
- آشنایی با شاخصهای مرکزی و پراکندگی
- متغیرها
- همبستگی و ماتریس همبستگی
- نمودار پراکندگی (scatterplot)
- Crosstab
- توابع Aggregation
- آشنایی با مفهوم Group by
- استفاده از تابع Group by برای محاسبه فراوانی یک متغیر کیفی
- استفاده از نمودار هیستوگرام برای محاسبه فراوانی یک متغیر کمی
- مفهوم significance (P-value)
- آزمونهای آماری پارامتریک
- آزمونهای آماری ناپارامتریک
- تعریف نمونهگیری
- مزایا و معایب نمونهگیری دار داده کاوی
- انواع روش پرکاربرد نمونه گیری
مفاهیم پیش پردازش دادهها
- پر کردن مقادیر NULL (کمی، کیفی اسمی و ترتیبی)
- فیلتر کردن رکورد یا وِیژگی
- تولید ویژگی feature generation))
- ساخت Dummy برای ویژگیهای کیفی
- Reclassification طبقه بندی مجدد مقادیر
- Join
- Append
- بخش بندی دیتا (Train_Test_Split)
- نرمالسازی
- استاندارد سازی
- تعریف کاهش ابعاد
- اهمیت کاهش ابعاد
- تعریف انتخاب ویژگی (Feature selection)
- اهمیت انتخاب ویژگی
- انواع روش انتخاب ویژگی
مفهوم سریهای زمانی
- تعریف سری زمانی
- تعریف برازش (Fitting) و پیش بینی (Forecasting)
- مدل ARIMA
- شاخصهای نیکویی برازش
- میانگین
- خطای معیار (SE)
- R2 ایستایی
- میانگین مجذور خطا (RMSE)
- میانگین قدر مطلق درصد خطا (MAPE)
- ماکزیمم قدر مطلق درصد خطا (MAX PE)
- میانگین قدر مطلق خطا (MAE)
- ماکزیمم قدر مطلق خطا (MAX AE)
- معیار اطلاعاتی نرمال شده بیز (Normalized BIC)
مفهوم رگرسیون خطی
- تعریف رگرسیون خطی
- رابطه خطی
- R Square
- خطای معیار تخمین
- فرضیه آماری آزمون معنا داری کل مدل رگرسیون (به کمک جدول Anova)
- مقدار ثابت (B0)
- مقدار ضریب متغیر مستقل (B1)
- فاصله اطمینان
- Regularization
- مفهوم Overfitting
مفهوم خوشه بندی (Clustering)
- تعریف خوشه بندی
- اهمیت خوشه بندی
- تفاوت خوشه بندی با کاهش ابعاد
- انواع روش خوشه بندی
- مفهوم distance / similarity
- Dendrogram
- مفهوم Agglomerative clustering
- مفهوم Linkage و انواع آن
- مفهوم Ward
مفهوم طبقه بندی (Classification)
- تعریف طبقه بندی
- تفاوت طبقه بندی با خوشه بندی
- اهمیت طبقه بندی
- آشنایی با الگوریتمهای طبقه بندی، مفاهیم و کاربردهای آنها
- کارنامه طبقه بندی و ارزیابی مدل
مفهوم آنالیز RFM
- تعریف اولیه
- اهمیت RFM
- مفهوم Recency
- مفهوم Frequency
- مفهوم Monetary
مفهوم قواعد انجمنی
- آشنایی با مفاهیم قواعد انجمنی
- محاسبات مربوطه
فصل 2-1 داده کاوی و یادگیری ماشین با پایتون
آشنایی با دوره
- معرفی دوره
- نصب و راه اندازی
مرور مبانی برنامه نویسی با پایتون با تمرکز بر داده کاوی و یادگیری ماشین
- شروع کار با پایتون
- انواع ساختار داده
- برنامه های کنترلی
- انواع توابع
- Iteratorها
- Comprehensionها
- Generatorها
- کلاسها
جبر خطی برای داده کاوی و یادگیری ماشین با پایتون
- آشنایی با جبر خطی
- کاربرد جبر خطی در داده کاوی و یادگیری ماشین
- بردارهای و محاسبات برداری در پایتون (ضرب داخلی، نرم برداری و …)
- ماتریسها و محاسبات ماتریسی در پایتون ( ضرب داخلی، ضرب اسکالر و …)
- برنامه نویسی عملیات ریاضی برای ماتریسها (چرخش ماتریس، معکوس کردن و …)
آشنایی با کتابخانههای دادهکاوی و یادگیری ماشین با پایتون
- کار با کتابخانه Numpy
- کار با کتابخانه Pandas
- مصورسازی دیتا با کتابخانه Matplotlib
- مصورسازی دیتا با کتابخانه Seaborn
وارد کردن دیتاستها
- وارد کردن انواع دیتاست (CSV, URL، Excel، Text، SAS، STATA)
تحلیل آماری
- آمار توصیفی
- رسم نمودار آماری
- همبستگی
- Crosstab (ساده و پیشرفته)
- جدول Pivot (ساده و پیشرفته)
- رسم نمودار heatmap با جدول Pivot
- انواع آزمونهای فرضیه ( آزمونهای میانگین)
- P- value
- انواع آزمونهای نرمال
- انواع آزمونها فرضیه (آزمون های ناپارامتری)
- نمونه گیری تصادفی ساده بر روی دیتاست محصولات
- Stratified Sampling
پیش پردازش داده
- پیش پردازش اولیه داده
- پر کردن مقادیر Null (کمی، کیفی اسمی و ترتیبی)
- فیلتر کردن رکورد یا وِیژگی
- مدیریت دیتای کیفی (اسمی و ترتیبی)
- تولید ویژگی (feature generation)
- ساخت Dummy برای ویژگیهای کیفی
- Reclassification (طبقه بندی مجدد مقادیر)
- Join (اتصال)
- Append (در پروژههای داده کاوی توضیح داده میشود)
- بخش بندی دیتا (Train_Test_Split)
- نرمالسازی
- استاندارد سازی
- انتخاب وِیژگی
- انتخاب وِیژگیهای مهم برای داده کاوی با جنگل تصادفی
- انتخاب وِیژگیهای مهم برای داده کاوی با الگوریتم KNN
- کاهش ابعاد
سری زمانی
- پیش بینی فروش میانه، بدبینانه و خوشبینانه کلا برای یک شرکت تجاری بین المللی
- مقایسه روند فروش محصولات شرکت طی چهار سال گذشته
رگرسیون خطی
- آشنایی با رگرسیون خطی
- پیش بینی ارزش خانه در شهر بوستون با ساخت معادله رگرسیونی خطی ساده و چندگانه
خوشه بندی
- آشنایی با خوشه بندی
- آشنایی با خوشه بندی سلسله مراتبی
- آشنایی با خوشه بندی k-means
- خوشه بندی بر روی دیتاست Iris با الگوریتم سلسله مراتبی
- خوشه بندی بر روی دیتاست Iris با الگوریتم K-means
- خوشه بندی مشتریان بانک
- خارج کردن دیتاست خوشه بندی شده از محیط
- مقایسه عملکرد الگوریتم DBSCAN و K-means در خوشه بندی مقادیر با پراکندگی کم
طبقه بندی
- آشنایی با مفهوم و الگوریتم طبقه بندی
- آشنایی با رگرسیون لجستیک
- آشنایی با درخت تصمیم
- آشنایی با KNN
- آشنایی با آنالیز خطی افتراقی (LDA)
- آشنایی با ماشین بردار پشتیبانی (SVM)
- نوشتن برنامه “انتخاب بهترین الگوریتم طبقه بندی”
- بازاریابی مستقیم بر روی دیتای کمپین بازاریی مشتریان بالقوه یک مؤسسه بانکی در پرتغال با کمک انتخاب وِیژگی و الگوریتم رگرسیون لجستیک
- ساخت سیستم تشخیص چهره به کمک الگوریتم بردار حمایت ماشینی (SVM)
- طبقه بندی متون اخبار به کمک شبکه بیز
- طبقه بندی بیماران دیابتی با درخت تصمیم + انتخاب وِیژگی (جنگل تصادفی)
- طبقه بندی گلهای دیتاست Iris با الگوریتم KNN + انتخاب وِیژگی
- نمودار ROC (ارزیابی مدل داده کاوی)
- Confusion Matrix (ارزیابی مدل داده کاوی)
- گزارش طبقه بندی (ارزیابی مدل داده کاوی)
مدیریت ارتباط با مشتری (CRM)
- آنالیر RFM بر شناسایی مشتریان وفادار و سودآور یک شرکت تجاری بین المللی
قواعد انجمنی (Association Rules)
- آشنایی با قواعد انجمنی
پروژه تحلیل سبد بازار (Market basket analysis) یک شرکت خرده فروشی بین المللی
فصل 2- متن کاوی و پردازش زبان طبیعی و صوت با پایتون
معرفی و مرور مبانی داده کاوی با پایتون
- معرفی دوره
- دانلود و نصب Jupyter notebook + نصب ابزار متن کاوی
استخراج متن از منابع مختلف
- استخراج متن از کتاب
- استراج متن از فایل word
- استخراج متن از فایل PDF
- استخراج متن از صفحه وب
- استخراج شناسه ایمیل از متن
- جایگزین کردن شناسههای ایمیل در متن
- مدیریت دیتای رشته در متن
- استخراج متن ازفایل Json
پیش پردازش متن
- تبدیل متن به Lowercase (کوچک کردن حروف واژه)
- Tokenization (جداسازی واژگان و جملات در متن)
- حذف Punctuation (نقطه گذاری)
- حذف Stop word ها (واژگان پر تکرار و بیاهمیت)
- استاندارد سازی متن (Text standardization)
- Stemming (حذف صرف فعل)
- Lemmatizing (تبدیل جمع به مفرد)
- تصحیح غلط نوشتاری
- محاسبه فراوانی لغات
- ساخت ابر واژگان
تبدیل متن به ویژگی
- تبدیل متن به ویژگی با استفاده کد گذاری (Encoding)
- تبدیل متن به ویژگی با استفاده بردار شمارش (Count Vectorizing)
- تبدیل متن به ویژگی با استفاده از N-Grams
- ویژگیهای مبتنی بر بایگرام یک فایل متن
- مهندسی ویژگی با TF-IDF
پردازش زبان طبیعی پیشرفته
- استخراج عبارت اسمی از متن
- شباهت سنجی میان متنها (Text similarity)
- برچسب گذاری نقش گرامری واژه (اسم، فعل، صفت و …) با POS Tagging
- استخراج اسامی خاص از متن (دانشگاه، استان، شخص و …)
- تحلیل احساسات + مثال (Sentiment Analysis)
- تشخیص معنی واژه در جملات مختلف
- ساخت سیستم ترجمه
- تبدیل صوت به متن
- تبدیل متن به صوت (یک فایل MP3)
پروژههای کسب و کار
- طبقه بندی متن پیامکها و شناسایی علل اسپم بودن آنها
- ساخت سیستم طبقه بندی شکایات مصرف کنندگان
- پروژه تحلیل احساسات مشتریان یک شرکت بزرگ
- خلاصه سازی متن یک صفحه وب
- خلاصه سازی متن یک کتاب
- پروژه خوشه بندی متن اسناد (Document Clustering)
فصل 3- یادگیری عمیق با پایتون (داده کاوی با استفاده از شبکههای عصبی)
معرفی و آشنایی با یادگیری عمیق
- معرفی دوره
- آشنایی و نصب کتابخانه Theano
- آشنایی و نصب کتابخانه Tensorflow
- آشنایی و نصب کتابخانه Keras
- مروری مبانی برنامه نویسی با پایتون با تمرکز بر داده کاوی و یادگیری ماشین
-
- شروع کار با پایتون
- انواع ساختار داده
- برنامه های کنترلی
- انواع توابع
- Iteratorها
- Comprehensionها
- Generatorها
- کلاسها
- کار با کتابخانه Numpy
- کار با کتابخانه Pandas
پرسپترونهای چندلایه (MLP)
- آشنایی با MLP و ساختار آن
- توسعه اولین مدل یادگیری عمیق بر روی دیتاست بیماران دیابتی
- لایههای تمام متصل (fully connected layers)
- Kernel initializer
- توابع فعال سازی در لایههای مختلف
- توابع loss
- توابع بهینه سازی
- Metrics
- Epochs
- Batch size
- ارزیابی دقت پیش بینی مدل
- روشهای ارزیابی عملکرد یادگیری عمیق
- روش اتوماتیک
- روش دستی
- روش Cross validation
- ارزیابی مدل با کتابخانه Scikit learn برای یادگیری ماشین
- پروژه 1: طبقه بندی چندگانه بر روی دیتاست گیاهان
- پروژه 2: طبقه بندی دیتاست سونار به همراه پیش پردازش دیتا
- پروژه 3: پیش بینی قیمت خانه
- ذخیره کردن مدل و وزنهای شبکههای عصبی
- حفظ بالاترین دقت پیش بینی در یادگیری عمیق با استفاده از checkpoint
- درک رفتار مدل با رسم دقت پیش بینی
- ساخت لایه Drop out برای regularization و کاهش over fitting
شبکههای عصبی کانولوشنالی (CNN)
- آشنایی با CNN و ساختار آن
- پروژه 4: طبقه بندی تصاویر اعداد با استفاده از MLP
- پروژه 5: طبقه بندی تصاویر اعداد با استفاده از CNN
- پروژه 6: تشخیص اشیا در تصاویر با CNN
- پروژه 7: تحلیل نظرات کاربران سایت فیلم با CNN
شبکههای عصبی بازگشتی (RNN)
- آشنایی با RNN و ساختار آن
- پیش بینی سریهای زمانی تعداد مسافران خط هوایی با استفاده از MLP
- پروژه 8: پیش بینی تعداد مسافران خط هوایی با RNN، LSTM
- پروژه 9: تحلیل نظرات کاربران سایت فیلم با LSTM
پروژه های پیشرفته یادگیری عمیق
- پروژه 10: ساخت موتور جستجو
- پروژه 11: طبقه متن پیامکهای مردم با MLP، CNN، RNN و LSTM
لینک دوره های دیگر
- آموزش داده کاوی و یادگیری ماشینی با IBM SPSS modeler
- آموزش جامع مبانی و مفاهیم داده کاوی و یادگیری ماشین
- آموزش داده کاوی و یادگیری ماشینی با پایتون
- آموزش متن کاوی با پایتون
- آموزش یادگیری عمیق با پایتون
- آموزش داده کاوی با رپیدماینر
- آموزش تصویر کاوی با رپیدماینر
- آموزش متن کاوی و وب کاوی با رپیدماینر
- پکیج آموزش جامع علم داده با رپیدماینر RapidMiner
- آموزش جامع هوش تجاری BI و تحلیل داده با تبلو Tableau
حاصل دوره
- شما یک متخصص علم داده (data scientist) و یادگیری ماشین (machine learning) با زبان پایتون (python) خواهید شد.
- پوشش جامع و پروژه محور نیازمندهای فرصت شغلی data scientist با پایتون
- پیشتیانی روزانه از سؤالات دانشجویان دوره برای تضمین یادگیری
توجه:
1- با توجه به تعداد زیاد فایل های آموزش و راحتی دانشجو در دانلود آنها، فایلها در دو بخش به صورت فشرده قرار داده شده است که پس از خرید دوره، مطابق با فهرست دوره قابل دانلود و مشاهده می باشند.
2- این آموزش در Jupyter notebook (ورژن 3.7 پایتون) تهیه و پیاده سازی شده است.
3- در صورت داشتن هر گونه سوال در خصوص دوره، از طریق آدرس ایمیل shahin.nouri91@gmail.com و یا ارسال تیکت (در صورت خرید دوره)، می توانید سؤالات خود را مطرح نمایید.
توجه : با هدف یادگیری کامل و تسلط به مباحث دوره، در صورت داشتن هر گونه سؤال، راهنمایی و نیاز به توضیحات بیشتر در خصوص فرآیندها و عملگرهای آموزش، دانشجویان محترم می توانند با ارسال تیکت از طریق بخش حساب کاربری و تیکت پشتیبانی با بنده در ارتباط باشند.
ویدئوهای دوره
معرفی دوره ویدئو
06:01
نصب و راه اندازی ویدئو
06:02
دانلود و نصب Jupyter notebook + نصب ابزار متن کاوی ویدئو
05:40
ماتریس ها در پایتون (1) ویدئو
32:58
استخراج داده از کتاب الکترونیک ویدئو
10:46
ساخت سیستم ترجمه ویدئو
02:26
تبدیل صوت به متن ویدئو
09:57
دانلود پارت اول : دروس 1 تا 20 ویدئو
06:33:48
دانلود پارت دوم : دروس 21 تا 74 ویدئو
13:50:21
دانلود پارت سوم : دروس 75 تا 127 ویدئو
12:24:22
دیتاست های فصل اول فایل های ضمیمه
دیتاست های فصل دوم فایل های ضمیمه
دیتاست های فصل سوم فایل های ضمیمه
سورس کدهای فصل اول فایل های ضمیمه
سورس کدهای فصل دوم فایل های ضمیمه
سورس کدهای فصل سوم فایل های ضمیمه
پاورپوینت های فصل اول فایل های ضمیمه
سورس کد فصل سوم (فرمت ipynb) فایل های ضمیمه
سورس کدهای اضافی (فصل اول) فایل های ضمیمه
متخصص علوم داده و فعال در صنعت بانک و بیمه. دارای مدرک کارشناسی آمار از دانشگاه شهید بهشتی و کارشناسی ارشد مدیریت فناوری از دانشگاه تهران
دوره های مرتبط
آموزش کوئری نویسی در MySQL
ارائه شده توسط< آرکادمی
آموزش جامع شی گرایی در جاوا
ارائه شده توسط< آرکادمی
آشنایی کامل با جاوا اسکریپت ES6
ارائه شده توسط< آرکادمی
مهاجرت به لینوکس – آموزش لینوکس مقدماتی
ارائه شده توسط< محمدرضا عسگری
آموزش جامع برنامه نویسی برد آردوینو
ارائه شده توسط< مجتبی شادریان
rate_reviewامتیاز دانشجویان دوره
chat_bubble_outlineنظرات
6,945,000 تومان قیمت اصلی: 6,945,000 تومان بود.1,389,000 تومانقیمت فعلی: 1,389,000 تومان.
فرصت باقیمانده تا پایان جشنواره مدار دانش
متخصص علوم داده و فعال در صنعت بانک و بیمه. دارای مدرک کارشناسی آمار از دانشگاه شهید بهشتی و کارشناسی ارشد مدیریت فناوری از دانشگاه تهران
farzanf( دانشجوی دوره )
من بیشتر دوره رو دیدم
پروژه های داذه کاوی و متن کاوی خیلی کامل و خوب بودن و برای مثال خیلی از تکنیک های کاربردی رسم نمودار، تحلیل آماری و پیش پردازش داده ها تو پروژه ها استفاده شده بود و این که حتما بخش های پروژه هارو باید دید تا کامل مسلط شد.
با تشکر از مدرس دوره.
sa( دانشجوی دوره )
با سلام. این دوره برای کسایی که چیزی از ماشین لرنینگ و دیپ نمیدونن مناسب نیست. تقریبا تمام مفاهیمی که باید بدونید تا استفاده کنید در کدها توضیح داده نمیشه اصلا. براس کسی خوبه که تمام مفاهیم رو مسلطه و میخواد پروژه ای هم با دانسته هاش حل کنه.
من مجبور شدم برم دوره دیگری رو برای آموزش تهیه کنم و اگر سایت داناپ امکان بازگشت هزینه رو داشت حتما هزینه رو پس میگرفتم چون بعد از دیدن چند ساعت از فیلم هیچی متوجه نشدم و استفاده ای نکردم از دوره.
هرچند داناپ دوره های خوب زیادی داره که خودم بحث بیت کوین و ماینینگ و رو دیدم خیلی عالی بود.
با تشکر از سایت خوبتون
شاهین نوری
سلام وقت بخیر؛
در صورت داشتن هر گونه سؤال، نیاز به راهنمایی و توضیحات بیشتر در خصوص کدهای آموزش، دانشجویان محترم می توانند علاوه بر ارسال تیکت از طریق بخش حساب کاربری، از طریق راه های پشتیبانی زیر در ارتباط باشند. لازم به ذکر است که پشتیبانی به صورت روزانه و سریع انجام می شود :
ایمیل : shahin.nouri91@gmail.com
آیدی تلگرام: Sh_N7294@
با احترام
شاهین نوری
سلام مجدد؛
۷ ساعت اموزش اختصاصی مفاهیم و مبانی داده کاوی و یادگیری ماشین در ابتدای فصل ۱ پکیج (به همراه توضیح مفاهیم کدهای پایتون) اضافه شد.
با احترام
احسان کاظم طرقی( دانشجوی دوره )
واقعا دوره عالیه،مفاهیم خیلی خوب و قابل فهمه،و اگر هم سوالی باشه استاد کامل و خیلی خوب جواب میدن و به راحتی همه ی این مباحث یاد گرفته میشه
مهدی مجیدزاده( دانشجوی دوره )
فوق العادست . این دوره دقیقا مطابق استانداردهای دوره هایی که تو coursera برگزار میشه انطباق داره و حتی بالاتره. استاد هم هر سوالی دارین بسیار عالی پشتیبانی میکنن . با این هزینه شما هیج جای دنیا نمیتونین همچین دوره ای رو داشته باشین.
ahiden
سلام
ببخشید این دوره برای کسی که برنامه نویسی با پایتون هم بلد نیس مناسب هست ؟ یعنی اموزش پایتون هم داده میشه در همین دوره یا باید جداگانه اموزش ببینیم
شاهین نوری
سلام وقت بخیر؛
بله مشکلی ندارد چون در فصل اول (داده کاوی و یادگیری ماشین)، در ابتدا مبانی برنامه نویسی با پایتون با تمرکز بر داده کاوی آموزش داده میشود ولی پیشنهاد میشه ویدیوها را خیلی با دقت مشاهده فرمایید و روی سورس کدهای آموزش هم خوب تمرین کنید.
با احترام
ahiden
خیلی ممنون
Lotfi( دانشجوی دوره )
سلام.
پکیج علم داده با زبان پایتون و تدریس فارسی تقریبا تو هیچ سایتی موجود نیست. یه سری وبسایت ها فقط تعدادی کتب، آن هم به زبان انگلیسی! در این خصوص معرفی کرده اند.
از مدرس دوره، استاد شاهین نوری بسیار سپاسگزارم بابت زمانی که صرف کردن و این دوره رو اینقدر جامع، با حوصله و گام به گام تدریس کردند. در خصوص پشتیبانی در کمترین زمان ممکن و با نهایت اشتیاق تمام پاسخ دانشجو رو می دهند و این برایم بسیار ارزشمند است.
سربلند باشید استاد گرامی
deena
با سلام واحترام.
خسته نباشید.بسیار بسیار عالی و روان توضیح دادید.یک دنیا از سپاسگزارم از تدریس فوق العاده ایی که داشتید.
deena
با سلام واحترام.
خسته نباشید.بسیار بسیار عالی بود.یک دنیا از سپاسگزارم از تدریس فوق العاده ایی که داشتید.
rashidi( دانشجوی دوره )
دورود بر استاد گرامی
مرسی از آموزشی که به جرعت می شود گفت در کشورهای جهان اول چندسالی است وارد مدار آموزش شده است و شما استاد گرامی این علم مهم را به زبان پارسی برای علاقه مندان آموزش دادید در کنار مطالب جامع و کاربردی
moc
ممنون از اقای نوری عزیز ک پکیج رو جامع کردن و وقت گذاشتن برای این دوره
همینطور برای پشتیبانی خوبشون که حتی برای کسایی ک زمینه آماری ضعیف تری دارن یه پیش دوره آماده کردن
امیدوارم استفاده کامل رو بتونیم از این دوره ببریم و در این زمینه بتونیم پیشرفت کنیم
fadaei.ali90( دانشجوی دوره )
سلام
بسیار بسیار دوره کامل و جامعی هست خصوصا برای ما که تازه میخوایم این زبان رو یاد بگیریم.
من خودم پکیج رو تهیه کردم و خیلی خوب دارم جلو میرم چون جناب مهندس نوری از مبتدی و مقدماتی خیلی خوب دارن توضیح میدن و میرن جلو.
ممنون از زحمات شما بابت تهیه این پکیج ارزشمند
MohammadhosseinJafari95( دانشجوی دوره )
نسبت به زمان آموزش، بسیار مفید بود و باید تشکر کرد بابت همکاری های کاملشان زمانی که من سوالی داشتم، در سریع ترین زمان ممکن جواب می دادند.
ebi_ravati
با تشکر منم دوره جامع داده کاوی با پایتون رو تهیه کردم خیلی خوب و مفید بود واقعا باورم نمیشد فکر میکردم چون قیمتش پایینه پکیج خوبی نیست ولی وقتی سطح آموزش رو دیدم واقعا میلیونها ارزش داره
و تشکر ویژه از استاد نوری بخاطر پشتیبانی سریع و فوف العادشون .
naeim_bakh( دانشجوی دوره )
سلام
من دوره های زیادی رو از سایت های زیادی گرفتم و دیدم
اما دوره ای رو ب کاملی این دوره ندیدم و چیزی که این دوره رو کامل تر میکنه پشتیبانی خوب و سریع آقای نوری هستش توی این مدت هر زمان که سوالی برام پیش اومده سریع و کامل سوال رو پاسخ دادن
Kouroshh
سلام وقت بخیر
آیا دوره «اموزش جامع مبانی و مفاهیم داده کاوی و یادگیری ماشین» پیش نیاز این پکیج است یا مطالب آن در این پکیج نیز قرار شده است؟
با تشکر
شاهین نوری
سلام وقت بخیر؛
سؤال بسیار خوبی پرسیدید و شاید برای کاربران دیگر نیز سؤال باشد.
1) این پکیج هیچ پیش نیازی ندارد.
2) تمام فایلهای دوره ” آموزش جامع مبانی و مفاهیم داده کاوی و یادگیری ماشین” در ابتدای فصل 1 این پکیج (قبل از آموزش داده کاوی و یادگیری ماشین با پایتون) تحت عنوان “دانلود پارت اول: دروس 1 تا 20” قرار داده شدهاند که میتوانید در بخش دانلود فایل ها مشاهده فرمایید.
3) تمام فایل های آموزش مطابق با فهرست دوره در این پکیج قرار داده شده است.
با احترام